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ABSTRACT

An increase in stall stocking density (SSD), as mea-
sured by the number of lactating cows per stall in a 
freestall barn, reduces cow performance, such as milk 
yield and fertility, but may increase farm profitability. 
Our objectives were to calculate effects of varying SSD 
on profit per stall for a range of effects on cow per-
formances and external farm factors and store results 
in regression metamodels. The literature on quantified 
effects of SSD on cow performance that directly affects 
cash flow was found to be weak. We assumed effects of 
SSD on milk yield, probability of conception, and prob-
ability of culling. External farm factors were probabil-
ity of insemination, feed price, and milk price. A herd 
budget-simulation model was used which mimics the 
performance of cows in a herd and calculates profit per 
stall per year and other results. The SSD varied from 
100 (no overstocking) to 150% (severe overstocking) in 
steps of 10%. Sensitivity analyses for effects of SSD on 
cow performance and effects of external farm factors 
were performed. Three regression metamodels were 
developed. The first metamodel accurately predicted 
profitability at 100% SSD for all variations in the exter-
nal farm factors. Optimal SSD varied from 100 to 150% 
SSD, depending on the combination of inputs, and was 
very sensitive to changes in the size of the milk loss and 
milk and feed prices. Average optimal SSD of all 2,187 
combinations of inputs was 120% SSD and average 
maximum increase in profit was $99/stall per year. Of 
the 2,187 combinations of inputs, 18% were ascending 
(maximum increase in profit >150% SSD), 33% were 
descending (maximum profit at 100% SSD), and 50% 
had a maximum increase in profit between 100 and 
150% SSD. The second metamodel accurately captured 
changes in profit for all combinations of biological and 
external inputs and SSD. A third metamodel captured 
breakeven daily milk losses which would result in the 
same profit as at 100% SSD given the same external 
farm factors. In conclusion, overstocking was profit-

able under plausible economic conditions in the United 
States. The 3 metamodels accurately captured the re-
sults for a wide range of values of the input variables. A 
tradeoff will occur between economically optimal SSD 
and animal welfare in some situations.
Key words: overcrowding, stocking density, profit, 
economics

INTRODUCTION

Stocking density on dairy farms is a quantitative 
measure of the concentration of dairy animals. It may 
be measured by the surface area per cow, feed bunk 
space per cow, or the number of cows per stall in a 
freestall barn [stall stocking density (SSD)]. In the 
current study we focus on the economics of SSD of 
lactating dairy cows because the literature on effects of 
SSD on cow performance appears to be stronger than 
the literature on other measures of stocking density. 
Overstocking in this context occurs when SSD >100%.

Cows are categorized as allelomimetic, meaning they 
want to express the same behavior at the same time 
(Barrows, 2001). This behavior includes the need to 
lie down or the need to eat when returning from the 
milking parlor. When stocking density is (too) high, the 
behavioral needs of the cow may not be met because 
other cows are in the way. This can negatively affect 
her health and performance and, hence, her economic 
performance. For example, Grant (2011) reported that 
significant overcrowding reduces feeding activity, alters 
resting behavior, and decreases rumination activity. In 
a review of 8 studies, Krawczel (2012) reported that 
lying time seemed to seriously decrease when the SSD 
was greater than 120%. In a designed experiment, 
Fregonesi et al. (2007) observed a reduction in lying 
time from 12.9 down to 11.2 h/d when SSD increased 
from 100 to 150%. Cook (2002) suggested that environ-
ments that increase the proportion of cows standing, 
and thus reducing the lying time to less than 10 to 11 h 
daily, put cows at risk of developing lameness and other 
health problems.

Significant overcrowding reduces milk production 
(Bach et al., 2008; Grant, 2011). Krawczel (2012) 
reported a study that found that first-parity cows 
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comingled with older cows were more affected by over-
stocking than older cows. Also, in that study, the lame 
cows in the pen suffered greater losses in milk yield 
than the healthy cows when SSD increased. In a survey 
on modernized Wisconsin dairy barns, Bewley et al. 
(2001) did not find statistically significant differences 
in annual rolling average milk production and feed in-
take between different stocking densities. Krawczel and 
Grant (2009) summarized studies that suggested milk 
fat slightly reduced whereas SCC tended to increase 
with greater SSD. Schefers et al. (2010) reported that, 
based on observations in large commercial dairy farms 
in the Midwest United States, fertility decreased with 
increased stocking densities.

The fixed costs of freestall barns may make it eco-
nomically attractive to increase the stocking density 
past the level where cow behavioral needs are best met. 
In a survey of modernized Wisconsin dairy barns con-
ducted in 1999, the average SSD was 108% (Bewley 
et al., 2001). Four-row barns had, on average, greater 
SSD than 6-row barns (111 vs. 104%). Farmer satisfac-
tion with cow comfort, milk production, and feed in-
take was consistent across all overcrowding categories. 
That study also found that barn costs per cow were 
the lowest in barns that had 121 to 130% SSD, but 
barn costs per stall were quite similar. The 2007 Dairy 
Survey (USDA-NAHMS, 2010) showed that 41% of US 
freestall operations had an average SSD ≥104%. In a 
survey of cow comfort of high-producing Holstein dairy 
cows in 121 North American freestall dairy farms, von 
Keyserlingk et al. (2012) reported that 60% of dairy 
farms had a SSD >100% (range = 71–197%); hence, 
overstocking of dairy cows is not uncommon. Lusk and 
Norwood (2011) illustrated the tradeoffs between farm 
profitability and animal welfare at different stocking 
densities for laying hens. We did not find economic 
evaluations of SSD in dairy freestall barns.

Stocking density economics follow the classical law 
of diminishing marginal returns (Lusk and Norwood, 
2011). This means that each additional cow will gener-
ate revenues (milk sales, calf value, cull sales) at costs 
that vary with the cow (variable costs: costs for feed, 
some parlor supplies, maybe some labor). Costs that 
are not affected (fixed costs) by the number of cows 
in the pen (e.g., depreciation and most of the labor 
costs when SSD varies moderately) do not affect the 
economically optimal SSD. Every additional cow also 
reduces the performance of the other cows already in 
the pen. The economic optimal SSD is reached when the 
marginal returns of the pen equal the marginal costs of 
the pen. At this SSD, the profit per stall is maximized. 
Adding another cow to the pen past the optimal SSD 
implies that the pen’s marginal returns are less than its 
marginal costs and profit per stall decreases.

Optimal economic SSD may be calculated with an 
economic simulation model. Results will depend on sev-
eral input variables with varying values, such as prices 
and assumed effects of SSD on cow performance. In 
sensitivity analysis, often one-factor-at-a-time designs 
are used to vary single inputs while holding other in-
puts constant. Such designs greatly limit the number 
of evaluated scenarios that can be reported. A larger 
number of combinations of inputs may be of interest 
(e.g., because effects of SSD on cow performance are 
somewhat uncertain), but reporting all results in tables 
or figures is not feasible. Metamodels are models of 
models that aim to simplify the relationship between 
the inputs and outputs of a simulation model (Fried-
man, 1996; Jalal et al., 2013). Examples of metamodels 
using regression applied to livestock science models 
include Vonk Noordegraaf et al. (2003), who modeled 
prevalence of infectious bovine rhinotracheitis for dif-
ferent control strategies, and Kristensen et al. (2008), 
who modeled gross margin as a function of technical 
performance indicators of dairy herds. These metamod-
els are then easily applied without the need for making 
the original simulation model available.

Our first objective was to evaluate the effects of 
SSD of lactating dairy cows on farm profitability. This 
includes finding the economically optimal SSD for a 
variety of different effects of SSD on cow performances 
(milk yield, probability of conception, culling). The 
economically optimal SSD may also depend on external 
farm factors, such as milk or feed prices. A second ob-
jective was to capture the results of many combinations 
of inputs with regression metamodels such that these 
results can be easily approximated without the simula-
tion model used in the current study.

MATERIALS AND METHODS

Herd Budget Model

We updated and expanded an existing herd budget 
model (Lima et al., 2010) for our economic analyses. 
Briefly, the herd budget model mimics the technical 
and economic performance of a herd of young stock and 
cows. Animal flow through the herd is modeled by Mar-
kov chains, which determine the daily probability an 
animal is in a state characterized by parity, days since 
calving, and days pregnant. Approximately 732,000 
states for cows are possible, depending on the length of 
the insemination period. Transition from state to state 
is calculated by the probabilities of culling, conception, 
abortion, and calving. Technical performance in a state 
is determined by technical inputs such as milk produc-
tion curves, feed intake functions, BW, probabilities of 
insemination, conception, abortion, and culling, as well 
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as management inputs such as lengths of the insemina-
tion period and dry period. Economic performance in 
a state is calculated from the technical performance 
and economic inputs such as prices of milk, culled and 
sold animals, feed, and various other variable costs. 
Fixed costs that only vary with the number of stall are 
included to allow calculation of realistic total costs per 
cow. Finally, herd outputs are calculated by summa-
tions of the multiplication the technical and economic 
performance in each state by the fraction of animals in 
that state. One such output is dairy farm profit. In the 
model, herd demographics and outputs are always in 
a deterministic steady state because the probability of 
each state remains constant over time given a set of in-
puts. Changes in any of the inputs result in immediate 
recalculation of steady state results. The herd budget 
model was developed in Excel (Microsoft, Redmond, 
WA).

For this study, dairy farm profit was expressed per 
stall per year. A stall is a freestall in a freestall barn 
containing lactating cows. The number of stalls for dry 
cows were assumed to be unlimited and are not rel-
evant for this study. Fixed costs vary with the number 
of stalls, but the number of stalls was kept constant. By 
definition, variable revenues and variable costs varied 
with the number of cows as described earlier. All rev-
enues (milk sales, calf values, cull sales) were assumed 
variable. Variable costs included feed costs, insemina-
tion costs, replacement costs, still birth and dystocia 
costs, and other variable costs such as for labor and 
parlor supplies.

We based our inputs for this study (Table 1) on our 
knowledge of plausible values for US dairy herds during 
the last several years, partly motived by data reported 
by DRMS (2015). Important inputs were varied in the 
sensitivity analysis to investigate their effect on SSD 
economics as described below. Our assumptions and 

therefore results were independent of the number of 
stalls on a farm.

Modeled Effects of Stall Stocking Density  
on Cow Performance

Stall stocking density could affect milk production, 
reproduction, and culling in the herd budget model 
based on a review of the literature and our assump-
tions. First, Bach et al. (2008) studied the effects of 
stocking density and other nondietary factors in 47 
dairy herds (approximately 3,129 lactating cows) from 
the northeast of Spain that were offered the same 
lactating ration. After correction for other nondietary 
factors, the authors found a linear loss in milk yield 
of 0.52 kg/d per 10% increase in SDD measured in 
the range from 83 to 167%. Alternatively, Grant (2011) 
reported a negative relationship of 1.68 kg/d for each 
hour of reduced lying time from experiments in the US 
Combining Grant’s data with the reduction in lying 
time due to overcrowding from Fregonesi et al. (2007); 
the result is that cows lose about 0.57 kg/d per 10% 
increase in SSD, which is similar to that of Bach et al. 
(2008). In our simulation, we therefore reduced milk 
production by 0.50 (default), 0.75, or 1.00 kg/d per cow 
per 10% greater SSD. The 0.75- and 1.00-kg/d losses 
are greater than the losses reported in the literature 
but might include other not well quantified effects, such 
as increased lameness or lower milk quality. Second, the 
probability of conception was reduced by 0.1 percentage 
points per 10% increase in SSD (default), as found by 
Schefers et al. (2010) for large commercial dairy farms 
in the Midwest United States. Reductions by 0 and 
0.2 percentage points in probability of conception were 
also evaluated. Third, increases in the relative prob-
ability of culling of 0 (default), 0.1, and 0.2 percentage 
points per 10% increase in SSD were evaluated based 

Table 1. Default technical and economic inputs for the herd budget model

Variable  Source or value

Lactation functions Based on Dematawewa et al. (2007)
Feed intake functions Based on NRC (2001)
BW functions Based on De Vries (2006)
Probability of culling Based on Lima et al. (2010)
Voluntary waiting period 60 d
Last insemination opportunity First parity 350 d, later parities 300 d
21-d service rate 60%
Probability of conception 40%
Probability of abortion 10%
Semen cost ($/insemination) $15
Milk price ($/kg) $0.45
Lactating feed cost ($/kg of DM) $0.35
Calf sale prices ($/head) Dairy male $50, dairy female $200
Cull price ($/kg of BW) $1.70
Other variable costs ($/cow per d) $2.00
Fixed costs ($/stall per d) $2.00
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on anecdotal evidence, although no literature regarding 
SSD and culling was found.

The biological losses as a result of overstocking were 
assumed to be the same for all parities in the model. 
The effects on milk production, probability of concep-
tion, and probability of culling, each at 3 levels, varied 
linearly with SSD; all 33 = 27 combinations of these 
biological effects were evaluated. Stall stocking density 
was varied from 100 to 150% in steps of 10 percentage 
points.

In the herd budget model, lower milk production re-
duced DMI and therefore reduced feed costs. Dry mat-
ter intake was otherwise independent of SSD. Lower 
probabilities of conception resulted in longer days open, 
increased reproductive culling, and, hence, affected the 
herd demographics with their associated revenues and 
costs. Increased probabilities of culling also changed 
herd demographics and annual cow replacement costs. 
Dry cow performance was assumed not affected by SSD. 
The number of dry cows depended on the number of 
lactating cows. The number of lactating cows depended 
only on SSD.

Sensitivity Analyses

Three sensitivity analyses were carried out to reveal 
how profitability of variations in SSD depended on the 
external factors milk price, feed price, probability of 
insemination, and fixed versus variable costs. In the 
first sensitivity analysis, the evaluated milk prices were 
$0.40, $0.45 (default), and $0.50/kg of milk. Evaluated 
feed prices were $0.30, $0.35 (default), and $0.40/kg 
of DM for lactating cows. The probabilities of insemi-
nation were 40, 60 (default), and 80%. Variable other 
costs were $1, $2 (default), and $3 per cow per day. 
Fixed cost per stall per day were $4 minus variable 
other costs. Therefore, the sum of variable other costs 
and fixed costs remained constant at 100% SSD; all 34 
= 81 combinations of these external effects were evalu-
ated for the 27 combinations of biological effects. In the 
first sensitivity analysis the full factorial of 37 = 2,187 
scenarios was evaluated for each of the 6 SSD, resulting 
in 13,122 evaluations with the herd budget model.

In the second sensitivity analysis, we created 1,000 
scenarios of randomly selected input values between the 
minimum and maximum of each of the biological and 
external input variables. We evaluated each scenario at 
each of the 6 SSD. This resulted in 6,000 evaluations. 
We used these 1,000 scenarios to test the goodness-
of-fit of the full-factorial regression metamodel A de-
veloped on the data from the first sensitivity analysis 
(explained below).

The third sensitivity analysis included finding the 
break-even milk losses for the 6 other (not milk loss) 

input variables (36 = 729 scenarios), with SSD varying 
from 110 to 150%, resulting in 3,645 evaluations. These 
break-even milk losses resulted in the same profit per 
stall per year as the 100% SSD for each of the 729 sce-
narios. Therefore, the change in profit per stall per year 
(dprofit) from the 100% SSD evaluation was $0 for 
each SSD in the same scenario. Break-even milk losses 
were found with the goalseek function in Excel because 
the relationship between milk loss and profitability in 
the herd budget model is nonlinear.

Metamodeling

We created 3 regression metamodels. Metamodel A 
captured the profit per stall per year at 100% SSD for 
the variations in milk price, feed price, and probability 
of insemination (27 scenarios) in the first sensitivity 
analysis. Metamodel B captured the change in profit 
per stall per year as a function of the 8 variables (3 
biological and 4 external effects, as well as SSD) in 
the first sensitivity analysis. Metamodel C captured 
the break-even milk loss for SSD >100% calculated in 
the third sensitivity analysis. We also regressed dprofit 
onto SSD for each scenario to see how well the response 
in dprofit to SSD could be fit by a low order polynomial 
equation.

We used the GLMSELECT procedure of SAS 9.3 
(SAS Institute Inc., Cary, NC) to find the best-fitting 
regression equations as metamodels. The main goal 
of the regression metamodels was prediction and not 
interpretation of the individual effects. Possible effects 
were limited to main effects, quadratic effects, and 
3-way interactions of the variables. Stepwise regression 
was used with the PRESS stop criterion to determine 
which effects remained in the model. There was no 
limit on the number of allowed effects in metamodel A. 
For metamodels B and C, the number of allowed effects 
in the final models ranged from 5 to 35. Goodness of 
fit was expressed as the root of the mean squared er-
ror (RMSE), prediction errors of single evaluations, 
bias, and the coefficient of determination of the final 
equation. The RMSE is a single measure of predictive 
power of a regression equation. Prediction errors were 
calculated as the actual observation from the herd bud-
get model minus the predicted observation from the 
regression metamodel.

RESULTS

Based on the default inputs and with a 100% SSD, 
results per stall per year were $5,307 milk sales, $442 
cull sales, $167 calf value, $2,973 feed costs, $845 re-
placement costs, and $867 variable other costs. Fixed 
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costs were $730, and profit was therefore $500. Further, 
annual milk yield was 11,794 kg, daily milk yield per 
lactating cow was 32.3 kg, 21-d pregnancy rate was 
19%, and annual cow cull rate was 37%. Profit per stall 
per year for the 27 combinations of milk prices, feed 
prices, and probabilities of insemination at 100% SSD 
ranged from −$568 to $1,558. Milk sales minus feed 
cost per 100 kg of milk varied from $4.97 to $28.30.

The regression metamodel A predicting profit per 
stall per year at 100% SSD was: −2011.2 + 11,328 × 
milk price + 947.29 × milk price × probability of in-
semination – 7,996.2 × feed price − 566.33 × milk price 
× feed price × probability of insemination. The RSME 
of this model was $7.64, coefficient of determination 
was 0.9998, and prediction errors ranged from −$6.96 
to $11.66. For the default inputs, predicted profit per 
stall per year was $490, resulting in a prediction error 
of $10.

When metamodel A was applied to the data set cre-
ated in the second sensitivity analysis (random inputs, 
100% SSD only, 1,000 evaluations), the bias was $5.42; 
standard deviation of the prediction errors was $4.72, 
with minimum and maximum prediction errors of 
−$5.84 and $11.79. Thus, metamodel A also provided 
good estimates of profit per stall per year for the ran-
domly chosen external farm factors values within the 
ranges of the sensitivity analysis.

Variations in SSD

Table 2 shows technical and economic herd statistics 
for the 6 SSD for the scenario with default inputs in 
the first sensitivity analysis. All sales, variable costs, 
and profit per stall per year increased with increas-
ing SSD in this scenario. The dprofit was $145 when 

SSD increased from 100 to 150%. As expected, milk per 
cow per day and 21-d pregnancy rate decreased with 
greater SSD. The annual cull rate slightly increased as 
a result of the lower reproductive efficiency, which led 
to a slightly greater culling risk of nonpregnant cows.

For each scenario in the first and second sensitiv-
ity analysis, the relationship between dprofit and SSD 
could be described by a concave quadratic equation 
with nearly perfect fit (maximum prediction error 
<$1). From these quadratic equations, the optimal 
SSD was calculated at the maximum dprofit between 
100 and 150% SSD. Average optimal SSD of the 2,187 
scenarios in the first sensitivity analysis was at 120% 
SSD and average maximum dprofit across all scenarios 
was $99. Average dprofit at 120% SSD was $20 across 
all scenarios. In the first sensitivity analysis, 384 (18%) 
scenarios were ascending (maximum dprofit >150% 
SSD), 716 (33%) were descending (maximum dprofit 
<100% SSD), and 1,087 (50%) scenarios had a maxi-
mum dprofit between 100 and 150% SSD. Optimal SSD 
in these last 1,087 scenarios was 122% and average 
dprofit was $65.

The marginal value of SSD around the optimal SSD 
was near $0 (a flat dprofit curve around the optimum 
SSD). In the scenarios that peaked between 100 and 
150% SSD, dprofit decreased by on average $10 when 
the SSD was 10 percentage points greater or smaller 
than the optimum SSD. The range was a loss between 
$4 and $16/stall per year.

The optimal SSD and dprofit were very sensitive to 
changes in the size of the milk loss and milk prices, as 
illustrated in Table 3 for 9 scenarios. Using the default 
milk price, at a loss of 0.50 kg/cow per d, the maximum 
dprofit was $145 at 148% SSD. At losses of 0.75 and 
1.00 kg/cow per d, the optimal SSD were 118 (dprofit = 

Table 2. Technical and economic results for the herd budget model with default assumptions for inputs and effects of stall stocking density 
(SSD) on cow performance1

Item per stall per year

SSD

100% 110% 120% 130% 140% 150%

Milk sales ($) 5,307 5,747 6,170 6,576 6,965 7,338
Cull sales ($) 442 490 538 587 638 689
Calf sales ($) 167 183 199 216 232 249
Feed cost ($) 2,973 3,244 3,511 3,773 4,030 4,282
Replacement costs ($) 845 937 1,029 1,124 1,220 1,319
Variable other costs ($) 867 954 1,040 1,127 1,213 1,300
Fixed costs ($) 730 730 730 730 730 730
Profit ($) 500 555 596 626 642 645
Number of calvings 1.22 1.34 1.46 1.58 1.69 1.81
Milk yield (kg) 11,794 12,770 13,710 14,613 15,478 16,306
Milk/cow per d (kg) 28.48 28.06 27.64 27.22 26.80 26.38
21-d pregnancy rate (%) 19.2 18.8 18.4 18.0 17.5 17.1
Annual cull rate (%) 37.3 37.6 37.9 38.2 38.6 38.9
1Default SSD effects: 0.5 kg/cow per d decrease in milk yield per 10% increase in SSD, 0.1 percentage point lower probability of conception per 
10% increase in SSD, no effect of SSD on probability of culling.
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$29) and 100% (dprofit = $0), respectively. When the 
milk price was $0.40/kg, the optimal SSD were lower 
than at higher milk prices because the pen’s increase in 
milk yield is worth less. Similarly, greater milk prices 
lead to higher optimal SSD and greater dprofit.

The effects of the changes in probability of culling on 
optimal SSD were small. In the scenario with default 
inputs, increases in the probabilities of culling of 0, 
10, and 20% resulted in optimal SSD of 148, 144, and 
141%, respectively; when the milk price was $0.40/kg, 
the optimal SSD were 110, 108, and 106% respectively. 
These ranges were slightly smaller when milk loss was 
0.75 or 1.00 kg/d.

Increases in feed cost reduced the optimal SSD, but 
the effect of a change of $0.05/kg of DM on the op-
timal SSD was smaller than a change in $0.05/kg of 
milk because each kilogram greater DMI resulted in 
approximately 1.4 kg more milk. Increases in variable 
other costs also reduced the optimal SSD. An increase 
of $1/d variable other costs had the similar effect on 
the optimal SSD as a decrease of $0.04/kg of milk when 
average milk yield was 28 kg/d.

The effects of changes in probability of insemination 
on optimal SSD were much smaller than the effect of 
changes in milk prices. In the scenario with default 
other inputs, probabilities of insemination of 40, 60, 
and 80% resulted in optimal SSD of 141, 148, and 
150%, respectively; when the milk price was $0.40, the 
optimal SSD were 103, 110, and 115%, respectively. 
These ranges were slightly smaller when milk loss was 
0.75 or 1.00 kg/d.

Metamodeling of Variations in SSD

We captured the dprofit for each of the 6 SSD of the 
2,187 scenarios in the first sensitivity analysis with 5 
regression metamodels that varied in the number of pa-

rameters allowed. The first metamodel including only 
the main effects of the 7 biological and external input 
variables and SSD and SSD2 had a large RSME of $108 
and coefficient of determination of 0.6860. Fit statistics 
of 4 other metamodels that allowed for 3-way interac-
tions of the 7-input variables and SSD and SSD2, but 
were limited to 5, 15, 25, or 35 parameters, are shown 
in Table 4. The metamodel with 25 parameters had 
noticeably better fit than the models with fewer param-
eters, but the gain from the 35-parameter metamodel 
was small. In the 35-parameter model (metamodel B, 
Table A1), bias was <0.001, RMSE was $2.5, and co-
efficient of determination was >0.999. The minimum 
and maximum prediction errors for the 13,122 evalu-
ations in the first sensitivity analysis were −$7 and 
$10. Regression models allowing for greater than 3-way 
interactions or >35 parameters resulted in only minor 
improvements in the goodness of fit (data not shown). 
We also judged the 35-parameter metamodel to be suf-
ficiently accurate for our predictions.

When metamodel B was applied to the 6,000 evalua-
tions of the second sensitivity analysis (random inputs), 
the bias was $1.86; standard deviation of the prediction 
errors was $2.1, with minimum and maximum predic-
tion errors of −$4 and $9. Thus, metamodel B also 
provided accurate estimates of dprofit at the 6 SSD for 
randomly chosen inputs.

The predicted optimum SSD using metamodel B were 
very similar to the optimum SSD found when separate 
quadratic equations were applied to each of the 2,187 
individual scenarios calculated in the first sensitivity 
analysis. For example, the standard deviation of the 
differences between the optimal SSD predicted by 
metamodel B and calculated with the herd budget 
model was 0.4 percentage points, with a minimum of 
−1.5 to 2.1 percentage points; the bias was 0.11 per-
centage points.

Table 3. Effects of milk loss, milk price, and stall stocking densities (SSD) on change in profit (dprofit; $/stall per year)1

Milk loss2  
(kg/d)

Milk price 
($/kg)

Maximum dprofit 
(optimum SSD)

dprofit at 5 SSD3

110% 120% 130% 140% 150%

0.5 $0.40 6 (110%) 6 0 −15 −43 −81
0.5 $0.45 145 (148%) 54 96 125 142 145
0.5 $0.50 371 (150%) 103 192 266 326 371
0.75 $0.40 0 (100%) −21 −57 −109 −177 −260
0.75 $0.45 29 (118%) 23 29 15 −17 −67
0.75 $0.50 145 (137%) 67 114 139 144 127
1.0 $0.40 0 (100%) −47 −114 −202 −310 −439
1.0 $0.45 0 (100%) −8 −39 −95 −175 −278
1.0 $0.50 38 (117%) 32 36 13 −39 −117
1Default SSD effects: 0.5 kg/cow per d decrease in milk yield per 10% increase in SSD, 0.1 percentage point lower probability of conception per 
10% increase in SSD, no effect of SSD on probability of culling.
2Milk loss per 10% increase in SSD.
3dprofit is $0 at 100% SDD.
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Break-Even Milk Yield Changes

In the third sensitivity analysis, break-even milk 
yield changes ranged from −1.76 to 0.37 kg/cow per d 
per 10% increase in SSD to obtain the same profit per 
stall per year as at 100% SSD. The greatest decrease 
in milk yield occurred where the marginal value of an 
additional cow was the greatest (high milk price, low 
feed price, low other variable cost, and SSD was 110%); 
profit per stall per year was then high. The greatest 
increase in milk yield was needed when the marginal 
value of an additional cow was negative and profit per 
stall per year was negative, which also occurred at a 
SSD of 110%. Increases in milk yield from greater SSD 
are unlikely to occur in reality.

Total milk change is the change in daily milk yield 
regardless of SSD that results in the same profit per 
stall per year as 100% SSD. Figure 1 shows total milk 
changes for the 3 milk prices evaluated and the default 
values for the other inputs at varying levels of SSD. For 
example, a 130% SSD and a decrease of 1.38 kg/d re-
sults in the same profit per stall per year as a 100% SSD 
and no decrease in milk yield when the milk price was 
$0.40/kg. Total break-even milk yield decreased more 
with higher milk prices ($0.50 vs. $0.40) and greater 
SSD (150%). The largest total milk yield decrease was 
6.45 kg/cow per d, when SSD was 150% and dprofit 
was the highest. The most positive total milk change 
was an increase of 1.68 kg/cow per d. In this case, the 
SSD was 150% and the marginal value of an additional 
cow was negative.

Metamodeling of Break-Even Milk Yield Changes

Metamodel C captured the total milk loss as a func-
tion of SSD and the 6 input variables (all input vari-
ables except milk loss; Table A2) in the third sensitivity 
analysis. Metamodel C was constrained to include 35 
parameters as a balance between accuracy of predic-
tion and size of the metamodel. The RMSE was 0.068 

kg/cow per d, coefficient of determination was 0.9980, 
and the bias was <0.0001. Minimum and maximum 
prediction errors were −0.24 and +0.19 kg/cow per d. 
In both cases, prediction errors were <11% of the to-
tal change in milk yield calculated by the herd budget 
model. Metamodels A, B, and C are available online 
in a Microsoft Excel 2013 spreadsheet (Supplemental 
data; http://dx.doi.org/10.3168/jds.2015-10556).

DISCUSSION

The main aim of our study was to evaluate the ef-
fect of varying SSD in a freestall barn on profitability 
per stall. The results should be interpreted with cau-
tion because the literature on effects of SSD on cow 
performance other than behavior is limited. Quantita-
tive relationships between variations in SSD and cow 
performance are scarce. Published effects of variations 
in stocking density are sometimes obtained from cross-
sectional studies where it may be difficult to control for 
other factors that differ on the surveyed farms. Alter-
natively, designed experiments with varying short-term 
stocking densities may not fully capture the long-term 
effects of overstocking. Most studies evaluated SSD less 
than 150%. We included only linear effects of varying 
SSD on cow performance, whereas a nonlinear effect 
of SSD might be expected. For example, in a review 
of 8 studies, Krawczel (2012) reported a nonlinear ef-
fect of stocking density on reduction in lying time. The 
perfect quadratic fit of dprofit as a function of SSD for 
each combination of inputs is the result of the assumed 
linear effects of SSD on milk loss, probability of concep-
tion, and probability of culling.

The herd statistics under the default assumptions 
(Table 1) reflected our chosen input values to represent 
a plausible (typical) US dairy herd (e.g., DRMS, 2015). 
The extensive sensitivity analyses aimed to represent a 
wide range of US dairy herds as well as possible effects 
of variations in SSD on cow performance.

Table 4. Fit statistics for the best 5-, 15-, 25-, and 35-parameter regression metamodels chosen from 7 
variables and up to 3-way interactions to predict change in profit per stall per day (dprofit) as a function of 
stall stocking density in the data set of the first sensitivity analysis1

Item 5 15 25 352

R2 0.731 0.993 >0.999 >0.999
Correlation prediction/actual 0.855 0.997 >0.999 >0.999
Bias <0.001 <0.001 <0.001 <0.001
Root mean square error 100.0 15.9 2.7 2.5
Minimum prediction error −391 −78 −11 −7
Maximum prediction error 459 82 11 10
1Seven variables included milk loss, probability of conception, probability of culling, probability of insemina-
tion, milk price, feed price, and variable cost.
2Metamodel B in this study.
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To overcome some of the concerns about underesti-
mating the effects of SSD in the literature, we evaluated 
3 levels of changes in milk yield, as well as calculated 
break-even milk yield losses that would result in the 
same profitability as when SSD was 100%. Greater ef-
fects of SSD on probability of conception and increases 
in culling were also evaluated. We did not investigate 
the economic response to SSD within subgroups of 
cows (e.g., per parity or pregnancy status) when 
similar cows are grouped together. For example, some 
evidence exists that milk production decreases in older 
cows are less than in younger cows when both groups 
are commingled (Krawczel, 2012), which implies that 
the optimal SSD for older cows may be greater than 
for younger cows. Future studies might evaluate other 
relationships between SSD and cow performance, such 
as greater effects of SSD on culling, fertility, and more 
limited effects on DMI.

Optimal SSD were very sensitive to reasonable 
changes in milk prices and feed prices. Optimal SSD 
increased when marginal cows were more profitable at 
100% SSD. The corollary is that SSD should be reduced 
when milk sales minus feed costs decrease, which is 
typical during periods with low milk prices. The prob-
ability of insemination and effects of SSD on culling 
had minor effects on the optimal SSD. Economically, 
the optimal SSD was ≥100% in 67% of the scenarios 
we evaluated (1,471/2,187) and ≥120% in 42% of the 
scenarios.

Whereas overstocking may be warranted economical-
ly under plausible assumptions, overstocking decreases 
animal welfare. Based on observations of primarily cow 
behavior, Krawczel and Grant (2009) recommended 
that SSD should not exceed 120%. Several measures 
of welfare are also reduced when SSD increases past 
approximately 120% (Moore, 2010). Legislation or 
acceptable animal husbandry practices may prevent 
(severe) overstocking. We did not attempt to combine 
both economic and welfare implications of overstocking 
in a multiobjective optimization of SSD to determine a 
recommended level of SSD.

We also did not attempt a probabilistic sensitiv-
ity analysis of input values to determine the most 
likely optimal economic SSD. Instead, stocking density 
characteristics for 2,187 scenarios were evaluated and 
captured with regression metamodels. The size of a 
metamodel is a tradeoff between the number of pa-
rameters and accuracy of prediction. Metamodel B for 
dprofit and the optimal SSD appeared to provide suf-
ficiently accurate predictions for the 7 input variables 
and SSD within the minimum and maximum values 
for each input. Notice that the effects of milk and feed 
prices can be linearly extrapolated outside of the price 
ranges evaluated in our study. The optimal SSD can be 
found for each scenario by taking the first derivative 
with respect to SSD from the regression metamodel B. 
Another way is to plot dprofit for various SSD given 
all other inputs and observe the SSD at the maximum. 

Figure 1. Break-even total milk changes per cow per day for 3 milk prices ($/kg of milk) and default values for the other inputs. All stall 
stocking densities result in the same profit/stall per year given a milk price.
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The metamodels also allow for calculating milk prices 
at which overstocking is no longer profitable.

Break-even changes in milk yield were also reasonably 
accurately captured with metamodel C. These break-
even milk yields may be approximated by holding the 
total milk yield in the freestall barn constant and then 
calculating decreases in milk yield per cow when cows 
are added. However, feed efficiency and reproductive 
efficiency, and therefore the marginal value of milk, 
change when SSD changes. Therefore, break-even profit 
analyses based on milk yield alone are less accurate.

Metamodeling using regression equations was fairly 
successful in our study as judged by analysis of the 
prediction errors. Improvements to the goodness of fit 
might be made by, for example, applying transforma-
tions to input variables or creating more regression 
equations to capture relationships in sub-datasets. Oth-
er methods for metamodeling have also been used, such 
as machine learning (e.g., Jalal et al., 2013; Shahinfar 
et al., 2014). An advantage of a regression metamodel 
is that the equation can be published and can easily be 
built into a spreadsheet or other software.

One assumption in our study was that other physical 
factors were not affecting cow performance when SSD 
was varied. In practice, overcrowding at the stalls likely 
also increases competition at the feed bunk. Studies that 
investigated effects of increasing SSD on milk produc-
tion, for example, may inherently have included some 
effects due to more limiting feed bunk space per cow, 
but these associations are not clear. Feed bunk stocking 
density may often be more limiting in 3-row pens and 
for transition cows than SSD. For example, Nordlund 
et al. (2006) believed that feed bunk space per cow is 
vastly more important as a risk factor for transition 
cow ketosis than SSD, because the most important un-
derlying factor in fresh cow disease is decreased DMI. 
Explicit effects of various feed bunk stocking densities 
on cow performance were not captured in our study, 
which further cautions the interpretation of our results.

CONCLUSIONS

Many studies exist that document the effects of 
(short-term) overstocking on cow behavior, but quan-
titative measures of overstocking on factors that affect 
cow cash flow directly (such as milk yield, fertility, and 
lameness) are scarce. The economically optimum SSD 
was quite sensitive to milk and feed prices. Overstock-
ing may be profitable under plausible economic condi-
tions in the United States. Stall stocking density should 
be reduced when milk sales minus feed cost per cow 
decrease to maximize profit per stall. We developed 3 
regression metamodels that accurately predicted profit 
per stall per year, change in profit, optimal SSD, and 

break-even milk yield for a wide range of values of the 
input variables. A tradeoff will occur between economi-
cally optimal SSD and animal welfare in some situa-
tions.
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Appendix

Table A1. Parameters of the final 35-parameter regression metamodel 
B to predict change in profit per stall per year as a function of stall 
stocking density and 7 input variables1

Parameter Value

Intercept 555.4104
SSD −556.884
Cullloss 73.28483
SSD*SSD2*cullloss −48.132
SSD*pconcloss −65.1464
SSD*SSD2*pconcloss 155.4083
SSD2*cullloss*pconcloss −14.0398
Milkprice −11,373.5
SSD*milkprice 11,375.87
SSD*milkloss*milkprice −3,460.22
SSD2*milkloss*milkprice 3,458.69
SSD2*cullloss*milkprice −50.6888
SSD*pconcloss*milkprice −1,435.01
SSD2*pconcloss*milkprice 1,287.949
Varcost 365.0111
SSD*varcost −365.006
Pinsem −98.8002
SSD*pinsem 101.2921
SSD2*cullloss*pinsem −43.5621
SSD*pconcloss*pinsem 210.8391
SSD2*pconcloss*pinsem −249.156
milkprice*pinsem −637.324
SSD*milkprice*pinsem 641.0897
Feedprice 8,089.51
SSD*feedprice −8,176.72
SSD2*feedprice 78.43678
SSD*milkloss*feedprice 1,199.899
SSD2*milkloss*feedprice −1,210.15
SSD2*pconcloss*feedprice −264.567
pconcloss*milkprice*feedprice 421.7833
pinsem*feedprice 104.7218
SSD2*pinsem*feedprice −98.8958
milkloss*pinsem*feedprice 21.25217
cullloss*pinsem*feedprice 105.8866
pconcloss*pinsem*feedprice 125.5131
1SSD = stall stocking density (100 to 150%); SSD2 = SSD*SSD; cull-
loss = increase in daily probability of culling per 10% increase in SSD 
(0 to 20%); pconcloss = decrease in probability of conception per 10% 
increase in SDD (0 to −20%); milkloss = milk loss per 10% increase 
in SSD (kg/cow per d, −0.5 to −1); pinsem = probability of insemina-
tion (40 to 80%); feedprice = feed price ($/kg of DM, 0.35 to 0.45); 
milkprice = milk price ($/kg of milk, 0.40 to 0.50); varcost = variable 
other costs ($/cow per day, $1 to $3).

Table A2. Parameters of the final 35-parameter regression metamodel 
C to predict break-even total milk change as a function of stall stocking 
density and 6 input variables1

Parameter Value

Intercept 10.56281
SSD 4.350154
SSD2 −15.401
SSD*SSD2*cullloss 0.38527
SSD*SSD2*pconcloss −1.55948
Milkprice 66.14257
SSD*milkprice −126.444
SSD2*milkprice 60.71502
cullloss*milkprice −0.9215
pconcloss*milkprice −2.06234
SSD*pconcloss*milkprice 4.48784
Varcost −2.17743
SSD2*varcost 1.724573
milkprice*varcost 7.906326
SSD*milkprice*varcost −6.67328
Pestrus 1.215613
SSD2*pinsem −1.2706
SSD2*cullloss*pinsem 0.145372
SSD2*pconcloss*pinsem 1.038439
milkprice*pinsem 6.226004
SSD*milkprice*pinsem −12.3313
SSD2*milkprice*pinsem 6.184119
pconcloss*milkprice*pinsem −2.30975
Feedprice −58.8246
SSD2*feedprice 73.62822
SSD*SSD2*feedprice −14.0186
pconcloss*feedprice 21.29553
SSD*pconcloss*feedprice −29.2613
SSD2*pconcloss*feedprice 9.303095
milkprice*feedprice 72.62433
SSD2*milkprice*feedprice −72.4799
varcost*feedprice −15.7139
SSD*varcost*feedprice 27.16529
SSD2*varcost*feedprice −9.87568
milkprice*varcost*feedprice −4.11607
1For each set of input variables, profit per stall per year is the same for 
any stall stocking density. SSD = stall stocking density (100 to 150%); 
SSD2 = SSD*SSD; cullloss = increase in daily probability of culling 
per 10% increase in SSD (0 to 20%); pconcloss = decrease in prob-
ability of conception per 10% increase in SDD (0 to −20%); pinsem 
= probability of insemination (40 to 80%); feedprice = feed price ($/
kg of DM, 0.35 to 0.45); milkprice = milk price ($/kg of milk, 0.40 to 
0.50); varcost = variable other costs ($/cow per day, $1 to $3).
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